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ABSTRACT: Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) qualitatively and quantitatively measured
resistant starch (RS) in rat cecal contents. Fisher 344 rats were fed diets of 55% (w/w, dry basis) starch for 8 weeks. Cecal
contents were collected from sacrificed rats. A corn starch control was compared against three RS diets. The RS diets were high-
amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch.
To calibrate the FTIR-PAS analysis, samples from each diet were analyzed using an enzymatic assay. A partial least-squares cross-
validation plot generated from the enzymatic assay and FTIR-PAS spectral results for starch fit the ideal curve with a R2 of 0.997.
A principal component analysis plot of components 1 and 2 showed that spectra from diets clustered significantly from each
other. This study clearly showed that FTIR-PAS can accurately quantify starch content and identify the form of starch in complex
matrices.
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■ INTRODUCTION

Foodstuffs contain a varied mixture of complex compounds and
materials. One of these compounds, starch, has been
characterized and studied for decades. Starch is commonly
found in many foods as starch granules, which are a
combination of amylose and amylopectin. The ratio of these
two compounds varies with source material, but the amount of
amylose in the normal starch granule is typically 15−30%, while
amylopectin can reach 70 or 100% for waxy starch.1−3 Amylose
can form single helical complexes with many chemicals, such as
free fatty acids and iodine, and it can also form double helices.3

Recently, resistant starches containing high concentrations of
amylose (up to 85%, high-amylose corn starch) and those with
chemical modifications have increasingly been investigated.3

These starches have been dubbed resistant starch (RS), because
of the fact that they resist degradation and absorption in the
small intestine.4

The decreased digestibility of RS has garnered attention from
researchers who study diabetes.5 With easily digestible starch,
diabetics have difficulty controlling their blood glucose levels,
but RS may impart many beneficial effects for diabetics through
reduction in blood glucose spikes.5−8 Another benefit of RS is
the potential to control energy intake. Many researchers are
attempting to find foods that digest slowly and decrease energy
intake, which could help with weight maintenance.9 RS can also
play a role as a prebiotic. Prebiotics encompass many of the
dietary fibers, including RS, which are not readily digestible by
humans. The undigested RS can be used by microbes within
the gut and may release beneficial compounds for the host
organism.10−13

There are five varieties of RS. Type 1 RS can be found in
coarsely ground legumes or whole grain. The cell wall
surrounding the type 1 RS makes the starch physically

inaccessible to digestion. Type 2 RS is individual C- or B-
type crystalline starch granules. Type 2 RS typically is raw
banana and potato starch and high-amylose corn starch that
retains the crystalline structure. Type 3 RS refers to retrograded
amylose.14 Type 4 RS is chemically modified starch.10,15 The
latest RS is type 5 RS, which is an amylose−lipid complex.16

Animal studies are often performed to evaluate RS
digestibility from analysis of fecal samples, which are complex
materials containing protein, carbohydrate, and lipid. Common
quantitative methods for analyzing starch content are starch-
hydrolysis enzyme assays. The enzyme assays are useful for
starch quantification but have many negative aspects for fecal
studies. The enzyme assays cost approximately $3 per sample,
take about 20 min per sample, and consume at least 0.2 g of dry
sample for analyses in duplicate. Studies with mice or rats tend
to produce large numbers of small samples, which may become
time-consuming and costly when hundreds of samples need to
be analyzed.
Our alternative proposed method of analysis is Fourier

transform infrared photoacoustic spectroscopy (FTIR-PAS).
Conventional FTIR relies on transmission of IR light through
the sample to measure the absorption bands of the compounds
of interest. Conventional FTIR does not work well with many
food products because of their opaque nature, light scattering
properties, and difficulties with sample preparation.17−19

Alternatively, FTIR-PAS directly measures the IR absorbance
spectrum of opaque samples, needs minimal sample prepara-
tion, and is fast and nondestructive.20 FTIR-PAS uses a PAS
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accessory, which has a sample cell with a window to allow a
modulated IR beam from the spectrometer to enter and
illuminate the sample.21 The IR light absorbed by the sample
heats it. The heat migrates to the gas/sample interface and
produces a pressure wave in proportion to the absorbance by
the sample. The resultant pressure signal is then picked up by a
sensitive microphone, and the signal is converted into a
wavenumber versus absorbance intensity spectrum.21 For
further information pertaining to FTIR-PAS theory or
explanation of various experimental methods, please see refs
22 and 23.
A handful of studies have successfully analyzed starch and

other food-based components using FTIR-PAS. One of the first
food analyses used IR-PAS with a near-infrared monochroma-
tor to determine the moisture content of protein powders.24

Later researchers applied FTIR-PAS to analyze protein and
carbohydrate but lacked statistical power to quantify the data.25

It was not until the mid-1990s that FTIR techniques with food
materials began to couple spectral results with statistical
techniques, such as partial least squares (PLS).26 PLS uses a
small training set of samples analyzed via a non-FTIR standard
method to calibrate the FTIR analysis. A multivariate model of
the spectral data with the quantitative values can be produced
to create a calibration to predict the composition of unknown
samples from their spectra. This approach has been confirmed
for determining lipid, protein, and carbohydrate concentrations
in pea seeds.27

The present study went beyond food and single-identity
starch analysis by quantifying modified starch in rat cecal
contents. Three types of RS were studied along with a control
corn starch. The first RS studied was high-amylose corn starch
(HA7), a type 2 RS. The second RS was octenyl succinic high-
amylose corn starch (OS-HA7), which is a type 4 RS. OS-HA7
is obtained from modifying starch with octenyl succinic
anhydride, which forms ester bonds with hydroxyl groups of
starch molecules. The third RS was high-amylose corn starch
complexed with stearic acid (RS5-HA7), a type 5 RS. RS5-HA7
is based on a physical complex between amylose and stearic
acid rather than chemical bonds.
The main goal of this study was to determine if FTIR-PAS

and PLS were a practical alternative to the enzymatic assay for
starch content. To achieve this, we needed to determine
whether FTIR-PAS analysis could produce a linear correlation
while accounting for potential interferences from the complex
sample matrix and RS modification. Beyond a quantitative fit of
the starch, principal component analysis (PCA) was tested to
determine if the different diets could be differentiated
qualitatively.

■ MATERIALS AND METHODS
Rat Animal Study. Fischer 344 rats were housed following the

procedure by Zhao et al.28 The animals were on the feeding regimen
for 8 weeks before the animals were sacrificed. The trial contained 90
rats total (2 rats died before sacrifice), which were randomly assigned
to four diet groups. The four diets consisted of the control (corn
starch), HA7, OS-HA7, and RS5-HA7 diets described below. For
purposes important to other companion studies based on this same
diet trial, the control and RS5-HA7 diet groups each contained 29 rats
and were broken down further into four subgroups per diet. The rats
were given two injections of either saline or the carcinogen
azoxymethane (AOM, Midwest Research Institute, Kansas City,
MO), administered following the method by Zhao et al.,28 and
some were fed an antibiotic treatment mixture of vancomycin and
imipenem. The treatments resulted in the four subgroups within the

control and RS5-HA7 diets that consisted of rats given both AOM and
antibiotic, AOM and no antibiotic, saline and antibiotic, and only
saline. Both HA7 and OS-HA7 diets contained 15 rats per diet group
and were divided into only two subgroups. They were given either
AOM and no antibiotic or neither. For purposes of the tests reported
here, we have grouped samples only according to diet and not
according to AOM or antibiotic treatment. The animal studies were
performed in compliance with the guidelines of The Institutional
Animal Care and Use Committee of Iowa State University.

Starch Diets Fed to Rats. Four starch varieties were used for the
feeding study: control (corn starch, Cargill Gel 03420; Cargill, Inc.,
Minneapolis, MN), HA7 (AmyloGel 03003; Cargill, Inc.), OS-HA7
(processed HA7 bound to octenyl succinate in the Department of
Food Science and Human Nutrition, Iowa State University), and RS5-
HA7 (processed using HA7 and stearic acid in the Department of
Food Science and Human Nutrition, Iowa State University).16,29 The
starches were cooked before being added to the diets following the
procedure by Zhao et al.28 The cooked starch was then added to a diet
formulated on the basis of the standard diet recommended by the
American Society for Nutritional Sciences for mature rats (AIN-
93M).30 Starch diets were prepared every other day and served fresh to
the rats.

Rat Cecal Samples. This study collected only the rat ceca and
placed the contents into Corning 15 mL centrifuge tubes (Tewksbury,
MA) on dry ice before storage at −80 °C. Because of two other
companion studies obtaining samples prior to this experiment, much
of the cecal contents from the samples was exhausted. Adequate
material from only 28 samples, seven from each of the four feeding
groups, could be randomly obtained. The wet cecal samples were
placed in aluminum weighing pans and dried in an oven at 105 °C for
3 h. After drying, the cecal material formed dry wafers, which were
ground using mortar and pestle. The ground cecal material was then
placed in 1.7 mL microcentrifuge tubes purchased from Marsh Bio
Products (Rochester, NY) and stored sealed at room temperature
prior to analysis.

Enzymatic Assay for Starch Content. The starch content of the
cecal materials was measured using Total Starch Assay Kit (Megazyme
International Ireland, Ltd., Co., Wicklow, Ireland) following American
Association of Cereal Chemists (AACC) Method 76-13.31

FTIR-PAS. The FTIR-PAS analysis was performed using a MTEC
Photoacoustics PAC300 detector mounted in a Digilab FTS 7000
FTIR spectrometer. The sample detector has a 1 cm interior diameter
and a window at the top for the infrared beam to enter the chamber
and illuminate the sample. The dried and ground cecal material was
placed in a disposable aluminum cup, which was fully illuminated by
the infrared beam. Immediately before analysis, the detector was
purged with helium gas to remove atmospheric water vapor and
carbon dioxide, which have strong mid-IR absorptions. Also, a
desiccant, magnesium perchlorate, was added beneath the sample to
remove any moisture that might evolve from the sample during
analysis. Spectra were taken at 8 cm−1 resolution and a 2.5 kHz scan
speed, with the co-addition of 256 scans.

PLS and PCA. The spectra were correlated with starch levels
determined by the enzymatic assay via PLS using commercial software
(Thermo Galactic GRAMS/AI PLSplus IQ, Version 5.1).32−34 PLS
uses a training set of spectra from samples whose relevant properties
are known and span the range of interest. In the present case, the
enzymatic assay provided the known property values. PLS modeling
determines a small set of basis-vector spectra, called factors, by which
it can describe all of the training set spectra. Each training set spectrum
is then just a weighted sum of the factors. The factors with the smallest
weightings consist mostly of noise and are dropped from the model.
PLS then performs a multiple linear regression correlating the factor
weightings with the known values of the property being predicted.
Once the PLS model is built, the correlated property can be
determined for unknown samples directly from the model, as long as
the properties of the unknowns fall within the range of those covered
by the original training set.

Because the starch level was determined for only 28 samples (seven
per diet), the sample set was not split into separate training and
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validation sets. Instead, all of the samples were used in creating the
PLS model, and a single-elimination cross-validation was used to
measure model quality. In such a cross-validation, one member of the
training set is removed and a model is built from the remaining
members. The removed spectrum is then analyzed as an unknown.
The removed spectrum is returned to the training set, then a different
one is removed, and the process is repeated. This is performed until all
training set members have been removed and analyzed as unknowns.
Plots comparing the known values and the predicted values from the
cross-validations are included in the Results and Discussion. The
standard error of cross-validation (SECV) is a measure of model
quality. It is the root-mean-square difference between the values of the
predicted property determined during the cross-validation and their
known values.
The model with the lowest prediction residual error sum of squares

(PRESS) value was selected as the most accurate model. PRESS is
given by

∑= −
=

k pPRESS ( )
i

N

i i
1

2

where ki and pi are the known and predicted values for the ith sample,
respectively, and there are N samples in the training set. In that most
accurate model, the 4000−397 cm−1 range of the spectra was used and
the spectra were preprocessed using multiplicative scatter correction
(MSC)35 and by conversion to first derivatives (19-point Savitsky−
Golay). The resulting model had 10 factors.
Classification of the spectra according to diet was performed using

PCA.36,37 The same 4000−397 cm−1 range and the same first
derivative and MSC preprocessing were applied to the data as in the
PLS modeling. This was sufficient to cleanly separate the samples into
clusters according to diet.

■ RESULTS AND DISCUSSION
Enzymatic Assay for Starch Content. Starch contents of

the cecal material from the rats fed different diets are shown in
Table 1. The cecal content from the rats fed the OS-HA7 diet
had the highest starch content, ranging from 47 to 50.1%,
whereas that from the rats fed the control diet with normal corn
starch had the lowest starch content, ranging from 0.3 to 1.1%.
There was no significant difference among the food
disappearance (used to estimate intake but includes loses) of
the rats fed the different diets (data not shown). These results
suggest that OS-HA7 has the highest resistance to in vivo
digestion, followed by RS5-HA7, HA7, and normal corn starch.
FTIR-PAS. The FTIR-PAS data were measured from 4000 to

397 cm−1. Spectra from all four diets are shown in Figure 1. All
samples show many bands in common, but in the fingerprint
region (1800−397 cm−1), there are visible differences among
the cecal samples from different diets. A study by Irudayaraj and
Yang using FTIR-PAS identified bands in pure starch and
protein spectra.38 However, because of the complexity of the
cecal samples, the present spectra have substantial peak overlap;
therefore, manual interpretation is not sufficient. The use of
chemometric software can analyze the data and draw out the
quantitative and qualitative data needed.
PLS was successfully used for starch to model the relation

between the enzymatic assay results and the FTIR-PAS spectra
of the rat cecal contents. Figure 2 shows the cross-validation for
the best fitting model. The plot correlates the known starch
content (dry basis) with the starch content predicted by the
PLS model. The diagonal line is the ideal (i.e., predicted =
known). The SECV is 1.055 wt %, and R2 is 0.997. The SECV
is only 2% of the starch content range in the sample set (0.3−
50.1 wt %); therefore, the predictions are of good quality. The
high quality of the predictions from the training set would allow

for unknown samples to be quantitatively analyzed for starch
content using the chemometric model developed. Also, because
the model was able to accurately fit every modified starch, the
model should be useful for any of the four starch diets used.
Besides the quantitative starch information, qualitative

information to identify which starch was measured is very

Table 1. Summary of Enzymatic Assay Analysis of in Vivo
Starch (Dry Basis) in Cecal Contents by Rat

diet rat number average starch (wt %) standard deviation

control 87 0.3 0.2
23 0.6 0.1
27 0.8 0.0
49 0.7 0.0
84 0.8 0.0
81 1.1 0.3
70 1.0 0.1
average 0.7

HA7 33 12.7 0.4
40 19.4 0.5
15 21.2 0.5
9 21.3 0.5
18 18.1 0.1
22 20.5 0.1
28 14.8 0.6
average 18.3

OS-HA7 14 47.9 0.1
16 47.9 0.1
10 49.8 0.3
44 47.1 0.4
6 50.1 0.4
50 50.0 0.1
52 49.1 0.7
average 48.8

RS5-HA7 12 24.0 0.1
1 19.2 0.3
20 17.1 0.6
29 13.3 0.5
43 28.1 0.2
57 30.5 0.7
64 21.5 0.4
average 21.9

Figure 1. FTIR-PAS spectra collected from rat cecal contents. The
spectra are from single representative rats from each of the diet groups.
Spectra are scaled and displaced vertically.
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useful. The spectral data were analyzed by PCA to aid in sample
identification. The first two principal components from the
PCA of the spectra cleanly separated the samples according to
diet, as shown in Figure 3. These two components account for
83.5% of the variance in the data. The PCA analysis gives a
simple and clearly visible means to match the cecal samples to
the corresponding starch diets.
Despite the similarity of the measured spectra for the

different cecal materials, chemometric analysis produced a
successful model of the data. The FTIR-PAS data coupled with
the enzyme starch assay results clearly were able to produce a
cross-validation plot that gave high-quality quantitative results.
The first two principal component scores were also able to
show clustering that would allow for qualitative identification of
starch in future unknown cecal samples. No clustering among
the antibiotic or AOM subgroup treatments was observed using
the PCA components. This finding should give credence to the
robustness of FTIR-PAS to see through minor effects even
within complex matrix materials.

This study was proof of concept for FTIR-PAS analysis of
starch to replace future high-volume enzymatic assay analysis.
Future work will incorporate timed fecal collections and FTIR-
PAS starch analysis and metabolic analysis. This analysis would
be used to track how the chemistry of the gut microbiome
changes as the animal adapts over time to a RS diet.
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